Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization

نویسندگان

  • Afonso S. Bandeira
  • Katya Scheinberg
  • Luís N. Vicente
چکیده

Interpolation-based trust-region methods are an important class of algorithms for Derivative-Free Optimization which rely on locally approximating an objective function by quadratic polynomial interpolation models, frequently built from less points than there are basis components. Often, in practical applications, the contribution of the problem variables to the objective function is such that many pairwise correlations between variables are negligible, implying, in the smooth case, a sparse structure in the Hessian matrix. To be able to exploit Hessian sparsity, existing optimization approaches require the knowledge of the sparsity structure. The goal of this paper is to develop and analyze a method where the sparse models are constructed automatically. The sparse recovery theory developed recently in the field of compressed sensing characterizes conditions under which a sparse vector can be accurately recovered from few random measurements. Such a recovery is achieved by minimizing the l1-norm of a vector subject to the measurements constraints. We suggest an approach for building sparse quadratic polynomial interpolation models by minimizing the l1-norm of the entries of the model Hessian subject to the interpolation conditions. We show that this procedure recovers accurate models when the function Hessian is sparse, using relatively few randomly selected sample points. Motivated by this result, we developed a practical interpolation-based trust-region method using deterministic sample sets and minimum l1-norm quadratic models. Our computational results show that the new approach exhibits a promising numerical performance both in the general case and in the sparse one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolating Polynomials from Their Values

A fundamental technique used by many algorithms in computer algebra is interpolating polynomials from their values. This paper discusses two algorithms for-solving this problem for sparse multivariate polynomials, anupdated version of a probabilistic one and a new deterministic techniqo" that uses some ideas due to Ben-Or and Tiwari (1988). In addition algorithms are presented for quickly findi...

متن کامل

gH-differentiable of the 2th-order functions interpolating

Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...

متن کامل

Abstracts of Recent Doctoral Dissertations in Computer Algebra Communicated

s of Recent Doctoral Dissertations in Computer Algebra Communicated by Jeremy Johnson Each month we are pleased to present abstracts of recent doctoral dissertations in Computer Algebra and Symbolic Computation. We encourage all recent Ph.D. graduates (and their supervisors), who have defended in the past two years, to submit their abstracts for publication in CCA. Please send abstracts to the ...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Geometry of interpolation sets in derivative free optimization

We consider derivative free methods based on sampling approaches for nonlinear optimization problems where derivatives of the objective function are not available and cannot be directly approximated. We show how the bounds on the error between an interpolating polynomial and the true function can be used in the convergence theory of derivative free sampling methods. These bounds involve a const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2012